Publications

Found 430 results
Author Title Type [ Year(Asc)]
2017
Yang W.H, Zhang T.X, Lin S., Ni W.Z.  2017.  Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. Environmental Science and Pollution Research. 24:14234-14248.
Khlifa R., Paquette A., Messier C., Reich P.B, Munson A.D.  2017.  Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecology and Evolution. 7:7965-7974.
Bulot A., Potard K., Bureau F., Bérard A., Dutoit T..  2017.  Ecological restoration by soil transfer: impacts on restored soil profiles and topsoil functions. Restoration Ecology. 25:354-366.
Liu H.W, Carvalhais L.C, Schenk P.M, Dennis P.G.  2017.  Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports. 7:8.
Bardelli T., Gomez-Brandon M., Ascher-Jenull J., Fornasier F., Arfaioli P., Francioli D., Egli M., Sartori G., Insamb H., Pietramellara G..  2017.  Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Science of The Total Environment. 575:1041-1055.
Al-Maliki S.MJ, Jones D.L, Godbold D.L, Gwynn-Jones D., Scullion J..  2017.  Elevated CO2 and Tree Species Affect Microbial Activity and Associated Aggregate Stability in Soil Amended with Litter. Forests. 8:13.
Domínguez MT, Gutiérrez E, González-Domínguez B, Román M, vila JMÁ, Ramo C, Gonzalez JM, García LV.  2017.  Impacts of protected colonial birds on soil microbial communities: When protection leads to degradation. Soil Biology and Biochemistry. 105:59-70.
Wasserstrom H., Ben-Ezra V.E, Sherman C., Unc A., Steinberger Y..  2017.  The influence of flint stones on a soil microbial community in the northern Negev Desert. Aims Microbiology. 3:580-595.
Zaayman M., Siggins A., Horne D., Lowe H., Horswell J..  2017.  Investigation of triclosan contamination on microbial biomass and other soil health indicators. FEMS Microbiology Letters. 364:6.
Delgado-Baquerizo M., Reich P.B, Khachane A.N, Campbell C.D, Thomas N., Freitag T.E, W. Al-Soud A, Sorensen S., Bardgett R.D, Singh B.K.  2017.  It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology. 19:1176-1188.
Wakelin S.A, Condron L.M, Gerard E., Dignam B.EA, Black A., O'Callaghan M..  2017.  Long-term P fertilisation of pasture soil did not increase soil organic matter stocks but increased microbial biomass and activity. Biology and Fertility of Soils. 53:511-521.
Brolsma KM, J. Vonk A, Mommer L, Van Ruijven J, Hoffland E, De Goede RGM.  2017.  Microbial catabolic diversity in and beyond the rhizosphere of plant species and plant genotypes. Pedobiologia. 61:43-49.
Delgado-Baquerizo M., Trivedi P., Trivedi C., Eldridge D.J, Reich P.B, Jeffries T.C, Singh B.K.  2017.  Microbial richness and composition independently drive soil multifunctionality. Functional Ecology. 31:2330-2343.
Tlili A, Hollender J, Kienle C, Behra R.  2017.  Micropollutant-induced tolerance of in situ periphyton: Establishing causality in wastewater-impacted streams. Water Research. 111:185-194.
Stazi S.R, Moscatelli M.C, Papp R., Crognale S., Grego S., Martin M., Marabottini R..  2017.  A Multi-biological Assay Approach to Assess Microbial Diversity in Arsenic (As) Contaminated Soils. Geomicrobiology Journal. 34:183-192.
Azimi Y., Thompson I.P.  2017.  Phosphorus Depletion as a Green Alternative to Biocides for Controlling Biodegradation of Metalworking Fluids. Environmental Science & Technology. 51:5695-5702.
de Dato G., Lagomarsino A., Lellei-Kovacs E., Liberati D., R. Jaoude A, Marabottini R., Stazi S.R, Guidolotti G., Kovacs-Lang E., Kroel-Dulay G. et al..  2017.  The Response of Soil CO2 Efflux to Water Limitation Is Not Merely a Climatic Issue: The Role of Substrate Availability. Forests. 8:22.
Davies T.KR, Lovelock C.E, Pettit N.E, Grierson P.F.  2017.  Short-term microbial respiration in an arid zone mangrove soil is limited by availability of gallic acid, phosphorus and ammonium. Soil Biology and Biochemistry. 115:73-81.
Thoumazeau A, Gay F, Alonso P, Suvannang N, Phongjinda A, Panklang P, Chevallier T, Bessou C, Brauman A.  2017.  SituResp®: A time- and cost-effective method to assess basal soil respiration in the field. Applied Soil Ecology. 121:223-230.
Trivedi P., Delgado-Baquerizo M., Jeffries T.C, Trivedi C., Anderson I.C, Lai K., McNee M., Flower K., Singh B.P, Minkey D. et al..  2017.  Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology. 19:3070-3086.
Florio A., Pommier T., Gervaix J., Bérard A., Le Roux X..  2017.  Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities. Scientific Reports. 7:12.
Erel R., Bérard A., Capowiez L., Doussan C., Arnal D., Souche G., Gavaland A., Fritz C., Visser E.JW, Salvi S. et al..  2017.  Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant and Soil. 412:115-132.
D. Howell M, M. MacKenzie D.  2017.  Using bioavailable nutrients and microbial dynamics to assess soil type and placement depth in reclamation. Applied Soil Ecology. 116:87-95.