Closed microbial communities self-organize to carbon

TitleClosed microbial communities self-organize to carbon
Publication TypeJournal Article
Year of Publication2021
AuthorsAstacio L.MD, Prabhakara K.H, Li Z.Q, Mickalide H., Kuehn S.
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Pagination9
Date PublishedNov
Type of ArticleArticle
ISBN Number0027-8424
Accession NumberWOS:000720926900009
Keywordsartificial selection, Carbon cycling, chlamydomonas, closed ecosystems, cycles, ecosystems, energy-flow, evolution, functional, mass, microbial communities, MODEL, oxygen, redundancy, Science & Technology - Other Topics, sulfur
Abstract

Cycles of nutrients (N, P, etc.) and resources (C) are a defining emergent feature of ecosystems. Cycling plays a critical role in determining ecosystem structure at all scales, from microbial communities to the entire biosphere. Stable cycles are essential for ecosystem persistence because they allow resources and nutrients to be regenerated. Therefore, a central problem in ecology is understanding how ecosystems are organized to sustain robust cycles. Addressing this problem quantitatively has proved challenging because of the difficulties associated with manipulating ecosystem structure while measuring cycling. We address this problem using closed microbial ecosystems (CES), hermetically sealed microbial consortia provided with only light. We develop a technique for quantifying carbon cycling in hermetically sealed microbial communities and show that CES composed of an alga and diverse bacterial consortia self-organize to robustly cycle carbon for months. Comparing replicates of diverse CES, we find that carbon cycling does not depend strongly on the taxonomy of the bacteria present. Moreover, despite strong taxonomic differences, self-organized CES exhibit a conserved set of metabolic capabilities. Therefore, an emergent carbon cycle enforces metabolic but not taxonomic constraints on ecosystem organization. Our study helps establish closed microbial communities as model ecosystems to study emergent function and persistence in replicate systems while controlling community composition and the environment.

Short TitleProc. Natl. Acad. Sci. U. S. A.Proc. Natl. Acad. Sci. U. S. A.
Alternate JournalProc. Natl. Acad. Sci. U. S. A.
stdClass Object
(
    [vid] => 736
    [uid] => 11
    [title] => Closed microbial communities self-organize to carbon
    [log] => 
    [status] => 1
    [comment] => 0
    [promote] => 1
    [sticky] => 0
    [nid] => 608
    [type] => biblio
    [language] => und
    [created] => 1656000740
    [changed] => 1656000740
    [tnid] => 0
    [translate] => 0
    [revision_timestamp] => 1656000740
    [revision_uid] => 11
    [biblio_type] => 102
    [biblio_number] => 45
    [biblio_other_number] => 
    [biblio_sort_title] => Closed microbial communities selforganize to carbon
    [biblio_secondary_title] => Proceedings of the National Academy of Sciences of the United States of America
    [biblio_tertiary_title] => 
    [biblio_edition] => 
    [biblio_publisher] => 
    [biblio_place_published] => 
    [biblio_year] => 2021
    [biblio_volume] => 118
    [biblio_pages] => 9
    [biblio_date] => Nov
    [biblio_isbn] => 0027-8424
    [biblio_lang] => English
    [biblio_abst_e] => Cycles of nutrients (N, P, etc.) and resources (C) are a defining emergent feature of ecosystems. Cycling plays a critical role in determining ecosystem structure at all scales, from microbial communities to the entire biosphere. Stable cycles are essential for ecosystem persistence because they allow resources and nutrients to be regenerated. Therefore, a central problem in ecology is understanding how ecosystems are organized to sustain robust cycles. Addressing this problem quantitatively has proved challenging because of the difficulties associated with manipulating ecosystem structure while measuring cycling. We address this problem using closed microbial ecosystems (CES), hermetically sealed microbial consortia provided with only light. We develop a technique for quantifying carbon cycling in hermetically sealed microbial communities and show that CES composed of an alga and diverse bacterial consortia self-organize to robustly cycle carbon for months. Comparing replicates of diverse CES, we find that carbon cycling does not depend strongly on the taxonomy of the bacteria present. Moreover, despite strong taxonomic differences, self-organized CES exhibit a conserved set of metabolic capabilities. Therefore, an emergent carbon cycle enforces metabolic but not taxonomic constraints on ecosystem organization. Our study helps establish closed microbial communities as model ecosystems to study emergent function and persistence in replicate systems while controlling community composition and the environment.
    [biblio_abst_f] => 
    [biblio_full_text] => 0
    [biblio_url] => 
    [biblio_issue] => 
    [biblio_type_of_work] => Article
    [biblio_accession_number] => WOS:000720926900009
    [biblio_call_number] => 
    [biblio_notes] => ISI Document Delivery No.: XA8YT
Times Cited: 1
Cited Reference Count: 62
Astacio, Luis Miguel de Jesus Prabhakara, Kaumudi H. Li, Zeqian Mickalide, Harry Kuehn, Seppe
Center for the Physics of Living Cells graduate fellowship program (NSF) [PHY 0822613, PHY 1430124]; NSF [MCB 2117477]
We acknowledge Dr. Karna Gowda for assistance with the microresp assay, James O'Dwyer and Andrew Ferguson for useful discussions, Annette Wells for laboratory support, and The Raymond J. Carver Biotechnology Center at the University of Illinois at UrbanaChampaign for gas chromatography-mass spectrometry. L.M.J.A. and Z.L. acknowledge support from The Center for the Physics of Living Cells graduate fellowship program (NSF Grants PHY 0822613 and PHY 1430124). S.K. and K.H.P. acknowledge NSF Grant MCB 2117477.
1
8
Natl acad sciences
Washington [biblio_custom1] => [biblio_custom2] => [biblio_custom3] => [biblio_custom4] => [biblio_custom5] => [biblio_custom6] => [biblio_custom7] => e2013564118 [biblio_research_notes] => [biblio_number_of_volumes] => [biblio_short_title] => Proc. Natl. Acad. Sci. U. S. A.Proc. Natl. Acad. Sci. U. S. A. [biblio_alternate_title] => Proc. Natl. Acad. Sci. U. S. A. [biblio_original_publication] => [biblio_reprint_edition] => [biblio_translated_title] => [biblio_section] => [biblio_citekey] => 608 [biblio_coins] => [biblio_doi] => [biblio_issn] => [biblio_auth_address] => [Astacio, Luis Miguel de Jesus; Li, Zeqian; Mickalide, Harry] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA. [Astacio, Luis Miguel de Jesus; Li, Zeqian; Mickalide, Harry] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Prabhakara, Kaumudi H.; Li, Zeqian; Kuehn, Seppe] Univ Chicago, Ctr Phys Evolving Syst, Chicago, IL 60637 USA. [Prabhakara, Kaumudi H.; Li, Zeqian; Kuehn, Seppe] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA.
Kuehn, S (corresponding author), Univ Chicago, Ctr Phys Evolving Syst, Chicago, IL 60637 USA.; Kuehn, S (corresponding author), Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA.
seppe.kuehn@gmail.com [biblio_remote_db_name] => [biblio_remote_db_provider] => [biblio_label] => [biblio_access_date] => [biblio_refereed] => [biblio_md5] => 5ce92fc2ad06497cf59aad631c0f5e2a [biblio_formats] => Array ( [biblio_abst_e] => full_html [biblio_abst_f] => full_html [biblio_notes] => full_html [biblio_research_notes] => full_html [biblio_custom1] => full_html [biblio_custom2] => full_html [biblio_custom3] => full_html [biblio_custom4] => full_html [biblio_custom5] => full_html [biblio_custom6] => full_html [biblio_custom7] => full_html [biblio_coins] => full_html [biblio_auth_address] => full_html ) [biblio_type_name] => Journal Article [biblio_contributors] => Array ( [0] => Array ( [nid] => 608 [vid] => 736 [cid] => 1687 [auth_type] => 1 [auth_category] => 1 [rank] => 0 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Astacio, L. M. D. [lastname] => Astacio [firstname] => L. [prefix] => [suffix] => [initials] => M. D. [affiliation] => [literal] => 0 [md5] => 7e09667e59a76a83e6650b08d8326b24 ) [1] => Array ( [nid] => 608 [vid] => 736 [cid] => 1688 [auth_type] => 1 [auth_category] => 1 [rank] => 1 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Prabhakara, K. H. [lastname] => Prabhakara [firstname] => K. [prefix] => [suffix] => [initials] => H. [affiliation] => [literal] => 0 [md5] => aa1ddd31e4e2a104b71389d2411e6975 ) [2] => Array ( [nid] => 608 [vid] => 736 [cid] => 1689 [auth_type] => 1 [auth_category] => 1 [rank] => 2 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Li, Z. Q. [lastname] => Li [firstname] => Z. [prefix] => [suffix] => [initials] => Q. [affiliation] => [literal] => 0 [md5] => 658e9579bc2e8f254396691a22c93532 ) [3] => Array ( [nid] => 608 [vid] => 736 [cid] => 1690 [auth_type] => 1 [auth_category] => 1 [rank] => 3 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Mickalide, H. [lastname] => Mickalide [firstname] => H. [prefix] => [suffix] => [initials] => [affiliation] => [literal] => 0 [md5] => 8b0806d9704993b6258e37c8559fe86c ) [4] => Array ( [nid] => 608 [vid] => 736 [cid] => 1691 [auth_type] => 1 [auth_category] => 1 [rank] => 4 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Kuehn, S. [lastname] => Kuehn [firstname] => S. [prefix] => [suffix] => [initials] => [affiliation] => [literal] => 0 [md5] => a5e2d8a4c23ce5e266e75c123c725dd8 ) ) [biblio_keywords] => Array ( [544] => artificial selection [273] => Carbon cycling [2002] => chlamydomonas [1999] => closed ecosystems [2004] => cycles [205] => ecosystems [2001] => energy-flow [552] => evolution [1459] => functional [2005] => mass [29] => microbial communities [945] => MODEL [1791] => oxygen [2000] => redundancy [1081] => Science & Technology - Other Topics [2003] => sulfur ) [body] => Array ( ) [rdf_mapping] => Array ( [rdftype] => Array ( [0] => sioc:Item [1] => foaf:Document ) [title] => Array ( [predicates] => Array ( [0] => dc:title ) ) [created] => Array ( [predicates] => Array ( [0] => dc:date [1] => dc:created ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [changed] => Array ( [predicates] => Array ( [0] => dc:modified ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [body] => Array ( [predicates] => Array ( [0] => content:encoded ) ) [uid] => Array ( [predicates] => Array ( [0] => sioc:has_creator ) [type] => rel ) [name] => Array ( [predicates] => Array ( [0] => foaf:name ) ) [comment_count] => Array ( [predicates] => Array ( [0] => sioc:num_replies ) [datatype] => xsd:integer ) [last_activity] => Array ( [predicates] => Array ( [0] => sioc:last_activity_date ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) ) [name] => clare.cameron [picture] => 0 [data] => a:13:{s:16:"ckeditor_default";s:1:"t";s:20:"ckeditor_show_toggle";s:1:"t";s:14:"ckeditor_width";s:4:"100%";s:13:"ckeditor_lang";s:2:"en";s:18:"ckeditor_auto_lang";s:1:"t";s:19:"biblio_show_profile";i:0;s:19:"biblio_my_pubs_menu";i:0;s:21:"biblio_contributor_id";s:1:"0";s:22:"biblio_id_change_count";s:1:"0";s:17:"biblio_user_style";s:6:"system";s:18:"biblio_baseopenurl";s:0:"";s:18:"biblio_openurl_sid";s:0:"";s:19:"biblio_crossref_pid";s:0:"";} [entity_view_prepared] => 1 )