Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants

TitleDetection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants
Publication TypeJournal Article
Year of Publication2018
AuthorsMcKinnon A.C, Glare T.R, Ridgway H.J, Mendoza-Mendoza A., Holyoake A., Godsoe W.K, Bufford J.L
JournalFrontiers in Microbiology
Volume9
Pagination16
Date PublishedJun
Type of ArticleArticle
ISBN Number1664-302X
Accession NumberWOS:000434783000001
Keywordsagroecosystems, biocontrol, biological-control, communities, diversity, ecology, endophytes, endophytic colonization, entomopathogenic fungi, gradient gel-electrophoresis, herbivores, insect, metarhizium-anisopliae, MICROBIAL, Microbiology, multitrophic interactions, pcr primers, plant interaction, soil bacteria
Abstract

Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1-alpha) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DOGE) and MicroResp (TM) techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect defensive strategy against herbivory and/or the result of induced systemic susceptibility in maize enabling plant colonization.

Short TitleFront. Microbiol.Front. Microbiol.
Alternate JournalFront. Microbiol.
stdClass Object
(
    [vid] => 512
    [uid] => 1
    [title] => Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants
    [log] => 
    [status] => 1
    [comment] => 0
    [promote] => 1
    [sticky] => 0
    [nid] => 459
    [type] => biblio
    [language] => und
    [created] => 1584009535
    [changed] => 1584009535
    [tnid] => 0
    [translate] => 0
    [revision_timestamp] => 1584009535
    [revision_uid] => 11
    [biblio_type] => 102
    [biblio_number] => 
    [biblio_other_number] => 
    [biblio_sort_title] => Detection of the Entomopathogenic Fungus Beauveria bassiana in t
    [biblio_secondary_title] => Frontiers in Microbiology
    [biblio_tertiary_title] => 
    [biblio_edition] => 
    [biblio_publisher] => 
    [biblio_place_published] => 
    [biblio_year] => 2018
    [biblio_volume] => 9
    [biblio_pages] => 16
    [biblio_date] => Jun
    [biblio_isbn] => 1664-302X
    [biblio_lang] => English
    [biblio_abst_e] => Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1-alpha) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DOGE) and MicroResp (TM) techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect defensive strategy against herbivory and/or the result of induced systemic susceptibility in maize enabling plant colonization.
    [biblio_abst_f] => 
    [biblio_full_text] => 0
    [biblio_url] => 
    [biblio_issue] => 
    [biblio_type_of_work] => Article
    [biblio_accession_number] => WOS:000434783000001
    [biblio_call_number] => 
    [biblio_notes] => ISI Document Delivery No.: GI8NZ
Times Cited: 0
Cited Reference Count: 74
Cited References:
Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
Arimura G, 2009, PLANT CELL PHYSIOL, V50, P911, DOI 10.1093/pcp/pcp030
Bacon CW, 2016, SYMBIOSIS, V68, P87, DOI 10.1007/s13199-015-0350-2
Barelli L, 2016, PLANT MOL BIOL, V90, P657, DOI 10.1007/s11103-015-0413-z
Behie SW, 2012, SCIENCE, V336, P1576, DOI 10.1126/science.1222289
Behie Scott W, 2013, Commun Integr Biol, V6, pe22321, DOI 10.4161/cib.22321
Bidochka MJ, 2001, APPL ENVIRON MICROB, V67, P1335, DOI 10.1128/AEM.67.3.1335-1342.2001
Brookes J. J., 2017, ENDOPHYTES MAIZE ZEA
Brown SDJ, 2012, MOL ECOL RESOUR, V12, P562, DOI 10.1111/j.1755-0998.2011.03108.x
Bruck DJ, 2010, BIOCONTROL, V55, P103, DOI 10.1007/s10526-009-9236-7
Calbrix R, 2005, EUR J SOIL BIOL, V41, P11, DOI 10.1016/j.ejsobi.2005.02.004
Campbell CD, 2003, APPL ENVIRON MICROB, V69, P3593, DOI 10.1128/AEM.69.6.3593-3599.2003
Canfora L, 2016, SCI REP-UK, V6, DOI 10.1038/srep22933
Chapman SJ, 2007, J SOIL SEDIMENT, V7, P406, DOI 10.1065/jss2007.10.259
Clarke K. R., 2015, PRIMER V7 USER MANUA, P296
CLARKE KR, 1988, MAR ECOL PROG SER, V46, P213, DOI 10.3354/meps046213
Degens BP, 1997, SOIL BIOL BIOCHEM, V29, P1309, DOI 10.1016/S0038-0717(97)00076-X
Dematheis F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037288
Doornbos RF, 2011, MOL PLANT MICROBE IN, V24, P395, DOI 10.1094/MPMI-05-10-0115
Dudareva N, 2006, CRIT REV PLANT SCI, V25, P417, DOI 10.1080/07352680600899973
Elliot SL, 2000, ECOL LETT, V3, P228
Fang WG, 2010, PLANT PHYSIOL, V154, P1549, DOI 10.1104/pp.110.163014
Gomes NCM, 2001, PLANT SOIL, V232, P167, DOI 10.1023/A:1010350406708
Gualandi RJ, 2014, SYMBIOSIS, V63, P111, DOI 10.1007/s13199-014-0293-z
Haney CH, 2018, MOL ECOL, V27, P1833, DOI 10.1111/mec.14400
HIGGINS DG, 1988, GENE, V73, P237, DOI 10.1016/0378-1119(88)90330-7
Hirsch J, 2013, MICROB ECOL, V66, P608, DOI 10.1007/s00248-013-0249-5
Hong MS, 2017, APPL MICROBIOL BIOT, V101, P6793, DOI 10.1007/s00253-017-8390-6
Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825
Hu G, 2002, APPL ENVIRON MICROB, V68, P6383, DOI 10.1128/AEM.68.12.6383-6387.2002
Jaronski S. T., 2008, USE ENTOMOPATHOGENIC, P91
Kepler RM, 2017, CURR OPIN MICROBIOL, V37, P48, DOI 10.1016/j.mib.2017.03.006
Keyser CA, 2014, FUNGAL ECOL, V11, P122, DOI 10.1016/j.funeco.2014.05.005
Kia SH, 2017, ISME J, V11, P777, DOI 10.1038/ismej.2016.140
Klimek B, 2016, EUR J FOREST RES, V135, P179, DOI 10.1007/s10342-015-0929-4
Koch E., 2018, Journal fur Kulturpflanzen, V70, P95
Kostenko O, 2012, ECOL LETT, V15, P813, DOI 10.1111/j.1461-0248.2012.01801.x
Lakshmanan V, 2012, PLANT PHYSIOL, V160, P1642, DOI 10.1104/pp.112.200386
Landa BB, 2013, J INVERTEBR PATHOL, V114, P128, DOI 10.1016/j.jip.2013.06.007
Lee B, 2012, ANN BOT-LONDON, V110, P281, DOI 10.1093/aob/mcs055
Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x
Lozano-Tovar MD, 2017, CROP PROT, V100, P186, DOI 10.1016/j.cropro.2017.06.026
Lugtenberg BJJ, 2002, ANTON LEEUW INT J G, V81, P373, DOI 10.1023/A:1020596903142
Mahoney- Kurpe S., 2017, THESIS
Mayerhofer J, 2017, FEMS MICROBIOL ECOL, V93, DOI 10.1093/femsec/fix117
McKinnon A. C., 2017, THESIS
McKinnon AC, 2017, BIOCONTROL, V62, P1, DOI 10.1007/s10526-016-9769-5
Meyling NV, 2007, BIOL CONTROL, V43, P145, DOI 10.1016/j.biocontrol.2007.07.007
Muhling M, 2008, ISME J, V2, P379, DOI 10.1038/ismej.2007.97
MUYZER G, 1993, APPL ENVIRON MICROB, V59, P695
Ownley BH, 2008, J INVERTEBR PATHOL, V98, P267, DOI 10.1016/j.jip.2008.01.010
Ownley BH, 2010, BIOCONTROL, V55, P113, DOI 10.1007/s10526-009-9241-x
Pangesti N, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00414
Pava-Ripoll M, 2011, MICROBIOL-SGM, V157, P47, DOI 10.1099/mic.0.042200-0
Pieterse CMJ, 2012, ANNU REV CELL DEV BI, V28, P489, DOI 10.1146/annurev-cellbio-092910-154055
Quesada-Moraga E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089278
Rasmann S, 2005, NATURE, V434, P732, DOI 10.1038/nature03451
Reynolds HL, 2003, ECOLOGY, V84, P2281, DOI 10.1890/02-0298
Roy HE, 2010, BIOCONTROL, V55, P1, DOI 10.1007/s10526-009-9244-7
Rudrappa T, 2008, PLANT PHYSIOL, V148, P1547, DOI 10.1104/pp.108.127613
Schulz B, 1998, SYMBIOSIS, V25, P213
Schwarzenbach K, 2007, APPL ENVIRON MICROB, V73, P6519, DOI 10.1128/A-EM.01405-07
SIMON L, 1992, APPL ENVIRON MICROB, V58, P291
Tall S, 2018, MICROB ECOL, V76, P1002, DOI 10.1007/s00248-018-1180-6
Ullrich C. I., 2017, Journal fur Kulturpflanzen, V69, P291
Vainio EJ, 2000, MYCOL RES, V104, P927, DOI 10.1017/S0953756200002471
Vargas WA, 2009, PLANT PHYSIOL, V151, P792, DOI 10.1104/pp.109.141291
Vidal S, 2015, CURR SCI INDIA, V109, P46
War AR, 2012, PLANT SIGNAL BEHAV, V7, P1306, DOI 10.4161/psb.21663
Wicaksono WA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163717
Yang DL, 2012, P NATL ACAD SCI USA, V109, pE1192, DOI 10.1073/pnas.1201616109
Zhang Z, 2000, J COMPUT BIOL, V7, P203, DOI 10.1089/10665270050081478
Zitlalpopoca-Hernandez G, 2017, APPL SOIL ECOL, V115, P38, DOI 10.1016/j.apsoil.2017.03.014
McKinnon, Aimee C. Glare, Travis R. Ridgway, Hayley J. Mendoza-Mendoza, Artemio Holyoake, Andrew Godsoe, William K. Bufford, Jennifer L.
Mendoza Mendoza, Artemio/F-3519-2013
Mendoza Mendoza, Artemio/0000-0002-1532-3406
Tertiary education Commission "Centre of Research Excellence" grant from the New Zealand government; Grasslanz Technology; Foundation for Arable Research through the Next Generation Biopesticides program [MBIE C10X310]
This project was funded through the Tertiary education Commission "Centre of Research Excellence" grant from the New Zealand government. The isolation of B. bassiana J18 was supported in part by two commercial groups in New Zealand, Grasslanz Technology and the Foundation for Arable Research through the Next Generation Biopesticides program (MBIE C10X310).

3
24
Frontiers media sa
Lausanne [biblio_custom1] => [biblio_custom2] => [biblio_custom3] => [biblio_custom4] => [biblio_custom5] => [biblio_custom6] => [biblio_custom7] => 1161 [biblio_research_notes] => [biblio_number_of_volumes] => [biblio_short_title] => Front. Microbiol.Front. Microbiol. [biblio_alternate_title] => Front. Microbiol. [biblio_original_publication] => [biblio_reprint_edition] => [biblio_translated_title] => [biblio_section] => [biblio_citekey] => 459 [biblio_coins] => [biblio_doi] => [biblio_issn] => [biblio_auth_address] => [McKinnon, Aimee C.; Glare, Travis R.; Mendoza-Mendoza, Artemio; Holyoake, Andrew; Godsoe, William K.; Bufford, Jennifer L.] Lincoln Univ, Bioprotect Res Ctr, Christchurch, New Zealand. [Ridgway, Hayley J.] New Zealand Inst Plant & Food Res Ltd, Christchurch, New Zealand.
McKinnon, AC (reprint author), Lincoln Univ, Bioprotect Res Ctr, Christchurch, New Zealand.
aimee.mckinnon@lincolnuni.ac.nz [biblio_remote_db_name] => [biblio_remote_db_provider] => [biblio_label] => [biblio_access_date] => [biblio_refereed] => [biblio_md5] => 2f3deae2ea578691b997fec63fd187f8 [biblio_formats] => Array ( [biblio_abst_e] => full_html [biblio_abst_f] => full_html [biblio_notes] => full_html [biblio_research_notes] => full_html [biblio_custom1] => full_html [biblio_custom2] => full_html [biblio_custom3] => full_html [biblio_custom4] => full_html [biblio_custom5] => full_html [biblio_custom6] => full_html [biblio_custom7] => full_html [biblio_coins] => full_html [biblio_auth_address] => full_html ) [biblio_type_name] => Journal Article [biblio_contributors] => Array ( [0] => Array ( [nid] => 459 [vid] => 512 [cid] => 938 [auth_type] => 1 [auth_category] => 1 [rank] => 0 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => McKinnon, A. C. [lastname] => McKinnon [firstname] => A. [prefix] => [suffix] => [initials] => C. [affiliation] => [literal] => 0 [md5] => 5c85a984aba4a9f783bf8301eab4dba5 ) [1] => Array ( [nid] => 459 [vid] => 512 [cid] => 939 [auth_type] => 1 [auth_category] => 1 [rank] => 1 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Glare, T. R. [lastname] => Glare [firstname] => T. [prefix] => [suffix] => [initials] => R. [affiliation] => [literal] => 0 [md5] => 4205cd7ac2c80a8eea676e4b73b4a27c ) [2] => Array ( [nid] => 459 [vid] => 512 [cid] => 700 [auth_type] => 1 [auth_category] => 1 [rank] => 2 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Ridgway, H. J. [lastname] => Ridgway [firstname] => H. [prefix] => [suffix] => [initials] => J. [affiliation] => [literal] => 0 [md5] => 8cba003d606aacd5c73c12cccffac289 ) [3] => Array ( [nid] => 459 [vid] => 512 [cid] => 940 [auth_type] => 1 [auth_category] => 1 [rank] => 3 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Mendoza-Mendoza, A. [lastname] => Mendoza-Mendoza [firstname] => A. [prefix] => [suffix] => [initials] => [affiliation] => [literal] => 0 [md5] => aa2b409f33b2011ea5a293f14359a892 ) [4] => Array ( [nid] => 459 [vid] => 512 [cid] => 941 [auth_type] => 1 [auth_category] => 1 [rank] => 4 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Holyoake, A. [lastname] => Holyoake [firstname] => A. [prefix] => [suffix] => [initials] => [affiliation] => [literal] => 0 [md5] => 442faf52d454bfec5403add70c799842 ) [5] => Array ( [nid] => 459 [vid] => 512 [cid] => 942 [auth_type] => 1 [auth_category] => 1 [rank] => 5 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Godsoe, W. K. [lastname] => Godsoe [firstname] => W. [prefix] => [suffix] => [initials] => K. [affiliation] => [literal] => 0 [md5] => a0ce88b9b58f11aa18b035ab0fe65102 ) [6] => Array ( [nid] => 459 [vid] => 512 [cid] => 943 [auth_type] => 1 [auth_category] => 1 [rank] => 6 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Bufford, J. L. [lastname] => Bufford [firstname] => J. [prefix] => [suffix] => [initials] => L. [affiliation] => [literal] => 0 [md5] => aa4607b4c5d8bcef2fe1ae7478a8a095 ) ) [biblio_keywords] => Array ( [291] => agroecosystems [1116] => biocontrol [972] => biological-control [67] => communities [132] => diversity [318] => ecology [1310] => endophytes [1314] => endophytic colonization [1309] => entomopathogenic fungi [388] => gradient gel-electrophoresis [1316] => herbivores [1315] => insect [1313] => metarhizium-anisopliae [514] => MICROBIAL [881] => Microbiology [1312] => multitrophic interactions [1318] => pcr primers [1311] => plant interaction [1317] => soil bacteria ) [body] => Array ( ) [rdf_mapping] => Array ( [rdftype] => Array ( [0] => sioc:Item [1] => foaf:Document ) [title] => Array ( [predicates] => Array ( [0] => dc:title ) ) [created] => Array ( [predicates] => Array ( [0] => dc:date [1] => dc:created ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [changed] => Array ( [predicates] => Array ( [0] => dc:modified ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [body] => Array ( [predicates] => Array ( [0] => content:encoded ) ) [uid] => Array ( [predicates] => Array ( [0] => sioc:has_creator ) [type] => rel ) [name] => Array ( [predicates] => Array ( [0] => foaf:name ) ) [comment_count] => Array ( [predicates] => Array ( [0] => sioc:num_replies ) [datatype] => xsd:integer ) [last_activity] => Array ( [predicates] => Array ( [0] => sioc:last_activity_date ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) ) [name] => admin [picture] => 0 [data] => a:14:{s:7:"overlay";i:0;s:16:"ckeditor_default";s:1:"t";s:20:"ckeditor_show_toggle";s:1:"t";s:14:"ckeditor_width";s:4:"100%";s:13:"ckeditor_lang";s:2:"en";s:18:"ckeditor_auto_lang";s:1:"t";s:19:"biblio_show_profile";i:0;s:19:"biblio_my_pubs_menu";i:0;s:21:"biblio_contributor_id";s:1:"0";s:22:"biblio_id_change_count";s:1:"0";s:17:"biblio_user_style";s:6:"system";s:18:"biblio_baseopenurl";s:0:"";s:18:"biblio_openurl_sid";s:0:"";s:19:"biblio_crossref_pid";s:0:"";} [entity_view_prepared] => 1 )