The mineralisation of dissolved organic matter recovered from temperate waterbodies during summer

TitleThe mineralisation of dissolved organic matter recovered from temperate waterbodies during summer
Publication TypeJournal Article
Year of Publication2016
AuthorsStutter M.I, Cains J.
JournalAquatic Sciences
Volume78
Pagination447-462
Date PublishedJul
Type of ArticleArticle
ISBN Number1015-1621
Accession NumberWOS:000377360200004
KeywordsBACTERIAL-GROWTH EFFICIENCY, CARBON-CYCLE, CHEMICAL-COMPOSITION, Dissolved organic matter, FRESH-WATERS, Headwaters, Land use, microbial respiration, NE SCOTLAND, Nutrients, Pond, REVERSE-OSMOSIS, sediments, STREAM WATER, TERRESTRIAL SOURCES, WATER SAMPLES
Abstract

Natural dissolved organic matter (DOM) has many forms in freshwaters, controlling C availability for heterotrophic respiration and ecosystem functions in headwaters and downstream ecosystems. This study aimed to examine the respiration of DOM recovered using reverse osmosis (RO) during extended summer baseflow from a parkland Pond (DOMPond) and three headwater rivers: moorland (DOMMoor), mixed agriculture (DOMAgr) and predominantly moorland system with mixed riparian forest (DOMForest), and compared to glucose and soil-derived fulvic acid. Batch decomposition tests at time points up to 379 h were completed in a replicated 96-well micro-plate system (MicroResp) spiking river sediments carrying a standardised microbial inoculum with C sources at two concentrations (1513 and 30 A mu gC/g sediment dry matter). Respiration rates were greatest initially and declined over time with an exponential form. Total C respired (38-80 %, following subtraction of basal respiration controls) for the high C treatment followed: DOMForest > DOMAgr > DOMMoor > DOMPond > Fulvic acid. A similar order occurred at the low C treatment but BDOC > 100 % was evidence that added DOM primed respiration of the sediment C above that of basal controls. Despite issues of high background salt concentrations in the DOM matrix caused by the RO procedure results show that even under summer baseflow conditions DOM can be highly labile. Labile C generated especially from agricultural catchments and those with riparian forests may be conveyed downstream to fresh and estuarine waters to control ecological processes at critical times of the year.

Short TitleAquat. Sci.Aquat. Sci.
Alternate JournalAquat. Sci.
stdClass Object
(
    [vid] => 377
    [uid] => 1
    [title] => The mineralisation of dissolved organic matter recovered from temperate waterbodies during summer
    [log] => 
    [status] => 1
    [comment] => 2
    [promote] => 1
    [sticky] => 0
    [nid] => 377
    [type] => biblio
    [language] => und
    [created] => 1569417068
    [changed] => 1569417068
    [tnid] => 0
    [translate] => 0
    [revision_timestamp] => 1569417068
    [revision_uid] => 11
    [biblio_type] => 102
    [biblio_number] => 3
    [biblio_other_number] => 
    [biblio_sort_title] => mineralisation of dissolved organic matter recovered from temper
    [biblio_secondary_title] => Aquatic Sciences
    [biblio_tertiary_title] => 
    [biblio_edition] => 
    [biblio_publisher] => 
    [biblio_place_published] => 
    [biblio_year] => 2016
    [biblio_volume] => 78
    [biblio_pages] => 447-462
    [biblio_date] => Jul
    [biblio_isbn] => 1015-1621
    [biblio_lang] => English
    [biblio_abst_e] => Natural dissolved organic matter (DOM) has many forms in freshwaters, controlling C availability for heterotrophic respiration and ecosystem functions in headwaters and downstream ecosystems. This study aimed to examine the respiration of DOM recovered using reverse osmosis (RO) during extended summer baseflow from a parkland Pond (DOMPond) and three headwater rivers: moorland (DOMMoor), mixed agriculture (DOMAgr) and predominantly moorland system with mixed riparian forest (DOMForest), and compared to glucose and soil-derived fulvic acid. Batch decomposition tests at time points up to 379 h were completed in a replicated 96-well micro-plate system (MicroResp) spiking river sediments carrying a standardised microbial inoculum with C sources at two concentrations (1513 and 30 A mu gC/g sediment dry matter). Respiration rates were greatest initially and declined over time with an exponential form. Total C respired (38-80 %, following subtraction of basal respiration controls) for the high C treatment followed: DOMForest > DOMAgr > DOMMoor > DOMPond > Fulvic acid. A similar order occurred at the low C treatment but BDOC > 100 % was evidence that added DOM primed respiration of the sediment C above that of basal controls. Despite issues of high background salt concentrations in the DOM matrix caused by the RO procedure results show that even under summer baseflow conditions DOM can be highly labile. Labile C generated especially from agricultural catchments and those with riparian forests may be conveyed downstream to fresh and estuarine waters to control ecological processes at critical times of the year.
    [biblio_abst_f] => 
    [biblio_full_text] => 0
    [biblio_url] => 
    [biblio_issue] => 
    [biblio_type_of_work] => Article
    [biblio_accession_number] => WOS:000377360200004
    [biblio_call_number] => 
    [biblio_notes] => ISI Document Delivery No.: DN8WI
Times Cited: 1
Cited Reference Count: 51
Cited References:
VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017
Vinten AJA, 2011, J MICROBIOL METH, V85, P190, DOI 10.1016/j.mimet.2011.03.001
Koprivnjak JF, 2006, WATER RES, V40, P3385, DOI 10.1016/j.watres.2006.07.019
Morrissey EM, 2014, GLOBAL CHANGE BIOL, V20, P1351, DOI 10.1111/gcb.12431
Ylla I, 2012, MICROB ECOL, V64, P593, DOI 10.1007/s00248-012-0062-6
Cole JJ, 2007, ECOSYSTEMS, V10, P171, DOI 10.1007/s10021-006-9013-8
Berggren M, 2010, ECOL LETT, V13, P870, DOI 10.1111/j.1461-0248.2010.01483.x
Maurice PA, 2002, WATER RES, V36, P2357, DOI 10.1016/S0043-1354(01)00442-0
Weishaar JL, 2003, ENVIRON SCI TECHNOL, V37, P4702, DOI 10.1021/es030360x
Filius JD, 2000, GEOCHIM COSMOCHIM AC, V64, P51, DOI 10.1016/S0016-7037(99)00176-3
Aitkenhead JA, 2000, GLOBAL BIOGEOCHEM CY, V14, P127, DOI 10.1029/1999GB900083
Romani AM, 2004, MICROBIAL ECOL, V47, P316, DOI 10.1007/s00248-003-2019-2
Kilduff JE, 2004, WATER RES, V38, P1026, DOI 10.1016/j.watres.2003.10.049
Schumacher M, 2006, BIOGEOCHEMISTRY, V80, P263, DOI 10.1007/s10533-006-9022-x
SONDERGAARD M, 1995, LIMNOL OCEANOGR, V40, P46
Dempsey CM, 2013, J FRESHWATER ECOL, V28, P411, DOI 10.1080/02705060.2013.773463
Stutter MI, 2008, J HYDROL, V350, P187, DOI 10.1016/j.jhydrol.2007.10.048
Volk CJ, 1997, LIMNOL OCEANOGR, V42, P39
Dawson JJC, 2012, SCI TOTAL ENVIRON, V434, P159, DOI 10.1016/j.scitotenv.2011.08.048
Vahatalo AV, 2010, BIOGEOCHEMISTRY, V100, P227, DOI 10.1007/s10533-010-9419-4
McDowell WH, 2006, SOIL BIOL BIOCHEM, V38, P1933, DOI 10.1016/j.soilbio.2005.12.018
Battin TJ, 2008, NAT GEOSCI, V1, P95, DOI 10.1038/ngeo101
Asmala E, 2013, BIOGEOSCIENCES, V10, P6969, DOI 10.5194/bg-10-6969-2013
SERKIZ SM, 1990, WATER RES, V24, P911, DOI 10.1016/0043-1354(90)90142-S
Franke D, 2013, FRESHWATER BIOL, V58, P2007, DOI 10.1111/fwb.12187
Tank SE, 2009, ECOLOGY, V90, P1910, DOI 10.1890/08-1010.1
Makino W, 2003, FUNCT ECOL, V17, P121, DOI 10.1046/j.1365-2435.2003.00712.x
Stutter MI, 2008, WATER RES, V42, P4249, DOI 10.1016/j.watres.2008.06.017
del Giorgio PA, 2008, LIMNOL OCEANOGR, V53, P185, DOI 10.4319/lo.2008.53.1.0185
Gjessing ET, 1999, ENVIRON INT, V25, P145, DOI 10.1016/S0160-4120(98)00119-6
Piccolo A, 2001, SOIL SCI, V166, P810, DOI 10.1097/00010694-200111000-00007
Rousk J, 2009, APPL ENVIRON MICROB, V75, P1589, DOI 10.1128/AEM.02775-08
Campbell CD, 2003, APPL ENVIRON MICROB, V69, P3593, DOI 10.1128/AEM.69.6.3593-3599.2003
McLaughlin C, 2013, FRESHW SCI, V32, P1219, DOI 10.1899/12-202.1
Stelzer RS, 2003, FRESHWATER BIOL, V48, P1925, DOI 10.1046/j.1365-2427.2003.01141.x
Battin TJ, 2003, NATURE, V426, P439, DOI 10.1038/nature02152
Mallin MA, 2004, ECOL APPL, V14, P823, DOI 10.1890/02-5217
Gjessing ET, 1998, WATER RES, V32, P3108, DOI 10.1016/S0043-1354(98)00060-8
Munster U, 1999, ENVIRON INT, V25, P209, DOI 10.1016/S0160-4120(98)00100-7
Ziegler SE, 2004, HYDROBIOLOGIA, V513, P153, DOI 10.1023/B:hydr.0000018180.54292.47
Stutter MI, 2013, WATER RES, V47, P1169, DOI 10.1016/j.watres.2012.11.035
Meyer JL, 1998, ECOSYSTEMS, V1, P240, DOI 10.1007/s100219900019
Francoeur SN, 2001, J N AM BENTHOL SOC, V20, P358, DOI 10.2307/1468034
Eiler A, 2003, APPL ENVIRON MICROB, V69, P3701, DOI 10.1128/AEM.69.7.3701-3709.2003
Blazejewski GA, 2009, SOIL SCI SOC AM J, V73, P1733, DOI 10.2136/sssaj2007.0386
SUN L, 1995, WATER RES, V29, P1471, DOI 10.1016/0043-1354(94)00295-I
Battin TJ, 2009, NAT GEOSCI, V2, P598, DOI 10.1038/ngeo618
Stutter MI, 2012, BIOGEOSCIENCES, V9, P2159, DOI 10.5194/bg-9-2159-2012
Berggren M, 2009, MICROB ECOL, V57, P170, DOI 10.1007/s00248-008-9423-6
Asmala E, 2014, J GEOPHYS RES-BIOGEO, V119, P1919, DOI 10.1002/2014JG002722
Findlay SEG, 2003, AQUATIC ECOSYSTEMS I, P512
Stutter, Marc I. Cains, Jonathan
Scottish Government RESAS
We are grateful to the funding support from Scottish Government RESAS to allow this work to take place under the NERC Macronutrient Cycles Program. We also acknowledge the help of Clare Cameron in setting up the MicroResp test system.
1
8
SPRINGER BASEL AG
BASEL
AQUAT SCI [biblio_custom1] => [biblio_custom2] => [biblio_custom3] => [biblio_custom4] => [biblio_custom5] => [biblio_custom6] => [biblio_custom7] => [biblio_research_notes] => [biblio_number_of_volumes] => [biblio_short_title] => Aquat. Sci.Aquat. Sci. [biblio_alternate_title] => Aquat. Sci. [biblio_original_publication] => [biblio_reprint_edition] => [biblio_translated_title] => [biblio_section] => [biblio_citekey] => 377 [biblio_coins] => [biblio_doi] => [biblio_issn] => [biblio_auth_address] => [Stutter, Marc I.] James Hutton Inst, Aberdeen AB15 8QH, Scotland. [Cains, Jonathan] Univ Edinburgh, Sch Geosci, Kings Bldg, Edinburgh EH9 3JW, Midlothian, Scotland.
Stutter, MI (reprint author), James Hutton Inst, Aberdeen AB15 8QH, Scotland.
marc.stutter@hutton.ac.uk [biblio_remote_db_name] => [biblio_remote_db_provider] => [biblio_label] => [biblio_access_date] => [biblio_refereed] => [biblio_md5] => 90d3b5437180a0104a18899f7fbff26a [biblio_formats] => Array ( [biblio_abst_e] => full_html [biblio_abst_f] => full_html [biblio_notes] => full_html [biblio_research_notes] => full_html [biblio_custom1] => full_html [biblio_custom2] => full_html [biblio_custom3] => full_html [biblio_custom4] => full_html [biblio_custom5] => full_html [biblio_custom6] => full_html [biblio_custom7] => full_html [biblio_coins] => full_html [biblio_auth_address] => full_html ) [biblio_type_name] => Journal Article [biblio_contributors] => Array ( [0] => Array ( [nid] => 377 [vid] => 377 [cid] => 184 [auth_type] => 1 [auth_category] => 1 [rank] => 0 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Stutter, M. I. [lastname] => Stutter [firstname] => M. [prefix] => [suffix] => [initials] => I. [affiliation] => [literal] => 0 [md5] => bb248cb76786ac86fe14b3e2f88a3112 ) [1] => Array ( [nid] => 377 [vid] => 377 [cid] => 670 [auth_type] => 1 [auth_category] => 1 [rank] => 1 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Cains, J. [lastname] => Cains [firstname] => J. [prefix] => [suffix] => [initials] => [affiliation] => [literal] => 0 [md5] => 9c6fd98f8c414680faa1e93ef3c92656 ) ) [biblio_keywords] => Array ( [914] => BACTERIAL-GROWTH EFFICIENCY [921] => CARBON-CYCLE [916] => CHEMICAL-COMPOSITION [911] => Dissolved organic matter [919] => FRESH-WATERS [912] => Headwaters [765] => Land use [275] => microbial respiration [922] => NE SCOTLAND [24] => Nutrients [913] => Pond [915] => REVERSE-OSMOSIS [866] => sediments [920] => STREAM WATER [917] => TERRESTRIAL SOURCES [918] => WATER SAMPLES ) [body] => Array ( ) [rdf_mapping] => Array ( [rdftype] => Array ( [0] => sioc:Item [1] => foaf:Document ) [title] => Array ( [predicates] => Array ( [0] => dc:title ) ) [created] => Array ( [predicates] => Array ( [0] => dc:date [1] => dc:created ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [changed] => Array ( [predicates] => Array ( [0] => dc:modified ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [body] => Array ( [predicates] => Array ( [0] => content:encoded ) ) [uid] => Array ( [predicates] => Array ( [0] => sioc:has_creator ) [type] => rel ) [name] => Array ( [predicates] => Array ( [0] => foaf:name ) ) [comment_count] => Array ( [predicates] => Array ( [0] => sioc:num_replies ) [datatype] => xsd:integer ) [last_activity] => Array ( [predicates] => Array ( [0] => sioc:last_activity_date ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) ) [name] => admin [picture] => 0 [data] => a:14:{s:7:"overlay";i:0;s:16:"ckeditor_default";s:1:"t";s:20:"ckeditor_show_toggle";s:1:"t";s:14:"ckeditor_width";s:4:"100%";s:13:"ckeditor_lang";s:2:"en";s:18:"ckeditor_auto_lang";s:1:"t";s:19:"biblio_show_profile";i:0;s:19:"biblio_my_pubs_menu";i:0;s:21:"biblio_contributor_id";s:1:"0";s:22:"biblio_id_change_count";s:1:"0";s:17:"biblio_user_style";s:6:"system";s:18:"biblio_baseopenurl";s:0:"";s:18:"biblio_openurl_sid";s:0:"";s:19:"biblio_crossref_pid";s:0:"";} [entity_view_prepared] => 1 )