Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata

TitlePhysiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata
Publication TypeJournal Article
Year of Publication2009
AuthorsMacdonald CA, Thomas N, Robinson L, Tate KR, Ross DJ, Dando J, Singh BK
JournalSoil Biology and BiochemistrySoil Biology and Biochemistry
Date Published2009/08/01/
ISBN Number0038-0717
KeywordsAfforestation, microbial community structure, Microbial function, Soil physico-chemical properties

Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures.