A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil

TitleA rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
Publication TypeJournal Article
Year of Publication2003
AuthorsCampbell C.D, Chapman S.J, Cameron C.M, Davidson M.S, Potts J.M
JournalApplied and Environmental Microbiology
Volume69
Pagination3593-3599
Date PublishedJun
ISBN Number0099-2240
Accession NumberWOS:000187156200071
Keywordsbiomass, co2, functional diversity, tests, utilization patterns
Abstract

Sole-carbon-source tests (Biolog), designed to identify bacteria, have become very popular for metabolically fingerprinting soil microbial communities, despite disadvantages associated with the use of carbon source profiles that primarily select for fast-growing bacteria. In this paper we describe the use of an alternative method that combines the advantages of the Biolog community-level physiological profile (CLPP) method, in which microtiter-based detection plates are used, with the ability to measure carbon dioxide evolution from whole soil. This method facilitates measurement over short periods of time (4 to 6 h) and does not require the extraction and culturing of organisms. Deep-well microtiter plates are used as test wells into which soil is placed. The apparatus to fill the deep-well plates and interface it with a second removable detection plate is described. Two detection systems, a simple colorimetric reaction in absorbent alkali and scintillation counting with radioactive carbon sources, are described. The methods were compared to the Biolog-CLPP system by using soils under different vegetation types and soil treated with wastewater sludge. We aimed to test the hypothesis that using whole soil would have specific advantages over using extracts in that more immediate responses to substrates could be obtained that would reflect activity rather than growth. The whole-soil method was more rapid and gave earlier detection of C source use. Also, the metabolic fingerprints obtained could discriminate between sludge treatments.

Short TitleAppl Environ MicrobAppl Environ Microb
Alternate JournalAppl Environ Microb
stdClass Object
(
    [vid] => 214
    [uid] => 1
    [title] => A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
    [log] => 
    [status] => 1
    [comment] => 2
    [promote] => 1
    [sticky] => 0
    [nid] => 214
    [type] => biblio
    [language] => und
    [created] => 1569416981
    [changed] => 1569416981
    [tnid] => 0
    [translate] => 0
    [revision_timestamp] => 1569416981
    [revision_uid] => 11
    [biblio_type] => 102
    [biblio_number] => 6
    [biblio_other_number] => 
    [biblio_sort_title] => rapid microtiter plate method to measure carbon dioxide evolved 
    [biblio_secondary_title] => Applied and Environmental Microbiology
    [biblio_tertiary_title] => 
    [biblio_edition] => 
    [biblio_publisher] => 
    [biblio_place_published] => 
    [biblio_year] => 2003
    [biblio_volume] => 69
    [biblio_pages] => 3593-3599
    [biblio_date] => Jun
    [biblio_isbn] => 0099-2240
    [biblio_lang] => English
    [biblio_abst_e] => Sole-carbon-source tests (Biolog), designed to identify bacteria, have become very popular for metabolically fingerprinting soil microbial communities, despite disadvantages associated with the use of carbon source profiles that primarily select for fast-growing bacteria. In this paper we describe the use of an alternative method that combines the advantages of the Biolog community-level physiological profile (CLPP) method, in which microtiter-based detection plates are used, with the ability to measure carbon dioxide evolution from whole soil. This method facilitates measurement over short periods of time (4 to 6 h) and does not require the extraction and culturing of organisms. Deep-well microtiter plates are used as test wells into which soil is placed. The apparatus to fill the deep-well plates and interface it with a second removable detection plate is described. Two detection systems, a simple colorimetric reaction in absorbent alkali and scintillation counting with radioactive carbon sources, are described. The methods were compared to the Biolog-CLPP system by using soils under different vegetation types and soil treated with wastewater sludge. We aimed to test the hypothesis that using whole soil would have specific advantages over using extracts in that more immediate responses to substrates could be obtained that would reflect activity rather than growth. The whole-soil method was more rapid and gave earlier detection of C source use. Also, the metabolic fingerprints obtained could discriminate between sludge treatments.
    [biblio_abst_f] => 
    [biblio_full_text] => 0
    [biblio_url] => 
    [biblio_issue] => 
    [biblio_type_of_work] => 
    [biblio_accession_number] => WOS:000187156200071
    [biblio_call_number] => 
    [biblio_notes] => 752hz
Times Cited:295
Cited References Count:27 [biblio_custom1] => [biblio_custom2] => [biblio_custom3] => [biblio_custom4] => [biblio_custom5] => [biblio_custom6] => [biblio_custom7] => [biblio_research_notes] => [biblio_number_of_volumes] => [biblio_short_title] => Appl Environ MicrobAppl Environ Microb [biblio_alternate_title] => Appl Environ Microb [biblio_original_publication] => [biblio_reprint_edition] => [biblio_translated_title] => [biblio_section] => [biblio_citekey] => 214 [biblio_coins] => [biblio_doi] => [biblio_issn] => [biblio_auth_address] => Macauley Inst, BioSS, Aberdeen AB15 8QH, Scotland [biblio_remote_db_name] => [biblio_remote_db_provider] => [biblio_label] => [biblio_access_date] => [biblio_refereed] => [biblio_md5] => 4d74e2890b28a9961c71bef3e1ce0d53 [biblio_formats] => Array ( [biblio_abst_e] => full_html [biblio_abst_f] => full_html [biblio_notes] => full_html [biblio_research_notes] => full_html [biblio_custom1] => full_html [biblio_custom2] => full_html [biblio_custom3] => full_html [biblio_custom4] => full_html [biblio_custom5] => full_html [biblio_custom6] => full_html [biblio_custom7] => full_html [biblio_coins] => full_html [biblio_auth_address] => full_html ) [biblio_type_name] => Journal Article [biblio_contributors] => Array ( [0] => Array ( [nid] => 214 [vid] => 214 [cid] => 1 [auth_type] => 1 [auth_category] => 1 [rank] => 0 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Campbell, C. D. [lastname] => Campbell [firstname] => C. [prefix] => [suffix] => [initials] => D. [affiliation] => [literal] => 0 [md5] => ed0d7aab0db9ba27ef8e6e4daa73082c ) [1] => Array ( [nid] => 214 [vid] => 214 [cid] => 2 [auth_type] => 1 [auth_category] => 1 [rank] => 1 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Chapman, S. J. [lastname] => Chapman [firstname] => S. [prefix] => [suffix] => [initials] => J. [affiliation] => [literal] => 0 [md5] => 069475b6819589eec968d63b22ba25e0 ) [2] => Array ( [nid] => 214 [vid] => 214 [cid] => 3 [auth_type] => 1 [auth_category] => 1 [rank] => 2 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Cameron, C. M. [lastname] => Cameron [firstname] => C. [prefix] => [suffix] => [initials] => M. [affiliation] => [literal] => 0 [md5] => 42a1d56e0a0970c670ea5b6bf01d5ec6 ) [3] => Array ( [nid] => 214 [vid] => 214 [cid] => 4 [auth_type] => 1 [auth_category] => 1 [rank] => 3 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Davidson, M. S. [lastname] => Davidson [firstname] => M. [prefix] => [suffix] => [initials] => S. [affiliation] => [literal] => 0 [md5] => 22f2b7627ac77a4b40fed3f9ecc200d6 ) [4] => Array ( [nid] => 214 [vid] => 214 [cid] => 5 [auth_type] => 1 [auth_category] => 1 [rank] => 4 [merge_cid] => 0 [aka] => 0 [alt_form] => 0 [drupal_uid] => [name] => Potts, J. M. [lastname] => Potts [firstname] => J. [prefix] => [suffix] => [initials] => M. [affiliation] => [literal] => 0 [md5] => 89de6406f1114850c01b7570a25356f5 ) ) [biblio_keywords] => Array ( [3] => biomass [5] => co2 [1] => functional diversity [4] => tests [2] => utilization patterns ) [body] => Array ( ) [rdf_mapping] => Array ( [rdftype] => Array ( [0] => sioc:Item [1] => foaf:Document ) [title] => Array ( [predicates] => Array ( [0] => dc:title ) ) [created] => Array ( [predicates] => Array ( [0] => dc:date [1] => dc:created ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [changed] => Array ( [predicates] => Array ( [0] => dc:modified ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) [body] => Array ( [predicates] => Array ( [0] => content:encoded ) ) [uid] => Array ( [predicates] => Array ( [0] => sioc:has_creator ) [type] => rel ) [name] => Array ( [predicates] => Array ( [0] => foaf:name ) ) [comment_count] => Array ( [predicates] => Array ( [0] => sioc:num_replies ) [datatype] => xsd:integer ) [last_activity] => Array ( [predicates] => Array ( [0] => sioc:last_activity_date ) [datatype] => xsd:dateTime [callback] => date_iso8601 ) ) [name] => admin [picture] => 0 [data] => a:14:{s:7:"overlay";i:0;s:16:"ckeditor_default";s:1:"t";s:20:"ckeditor_show_toggle";s:1:"t";s:14:"ckeditor_width";s:4:"100%";s:13:"ckeditor_lang";s:2:"en";s:18:"ckeditor_auto_lang";s:1:"t";s:19:"biblio_show_profile";i:0;s:19:"biblio_my_pubs_menu";i:0;s:21:"biblio_contributor_id";s:1:"0";s:22:"biblio_id_change_count";s:1:"0";s:17:"biblio_user_style";s:6:"system";s:18:"biblio_baseopenurl";s:0:"";s:18:"biblio_openurl_sid";s:0:"";s:19:"biblio_crossref_pid";s:0:"";} [entity_view_prepared] => 1 )